English  |  
当前位置:首页 > 学院总览 > 师资信息 > 正文
傅英姿
发布时间: 2015-12-22 14:18:11   作者:本站编辑   来源: 本站原创   浏览次数:


傅英姿

(教授、博士生导师)

个人简介

傅英姿,女,西南大学化学化工学院化学系教师,教授。中国化学会有机分析专业委员会委员。20066月获西南大学分析化学专业理学博士学位,师从袁若教授;20073月至201111月在四川大学化学博士后流动站从事研究工作,合作导师冯小明院士;20167月至20171月为美国加州大学圣地亚哥分校化学和生物化学系高级研究学者,合作导师Michael J. Sailor教授。20056月评聘为西南大学副教授,20067月评聘为西南大学硕士生导师;20116月评聘为西南大学教授,20137月评聘为西南大学博士生导师。近年来主要在纳米电致化学发光和电化学生物传感器、手性识别及手性电化学传感器方面开展了一系列的研究工作;先后主持国家自然科学基金面上项3项,国家自然科学基金重点项目子项目1项,重庆市市自然科学基金面上项目1项,重庆市高等教育教学改革项目1项;以第一作者和通讯作者在Anal. Chem., Biosens. Bioelectron., Chem.Commun., Sensor. Actuat. B, Analyst等国内外学术刊物上发表论文90余篇,其中80余篇被SCI收录。

 

联系方式

邮箱:fyzc@swu.edu.cn

QQ869454710

 

研究方向

1、纳米材料和电化学生物传感器

2、生物电分析化学

 

代表性论文(不超过20项)

1. Han Q.; Wang C.; Li Z. Z.; Wu J. L.; Liu P. K.; Mo F. J.; Fu Y. Z.Multifunctional zinc oxide promotes electrochemiluminescence of porphyrin aggregates for ultrasensitive detection of copper ion, Anal. Chem. 2020, 92: 3324-3331.

2. Wang C.; Han Q.; Mo F.J.; Chen M.; Xiong Z.W.; Fu Y. Z.* Novel Luminescent Nanostructured Coordination Polymer: Facile Fabrication and Application in Electrochemiluminescence Biosensor for microRNA-141 Detection, Anal. Chem. 2020, 92, 12145-12151.

3. Chen M.; Wang C.; Meng H.; Mo F. J.; Fu Y. Z.* A novel sign al self-enhancement photoelectrochemical immunosensor without addition of a sacrificial agent in solution based on Ag2S/CuS/a-Fe2O3 n–p–n heterostructure films, Chem. Commun., 2020, 56: 2300-2303.

4. Wang C.; Chen M.; Han Q.; Wu J. L.; Zhao X.; Fu Y. Z.* A three-dimensional DNA nanomachine with target recycling amplification technology and multiple electrochemiluminescence resonance energy transfer for sensitive microRNA-141 detection, Biosens. Bioelectron., 2020, 156: 112146.

5. Han Q.; Mo F. J.; Wu J. L.; Wang C.; Chen M.; Fu Y. Z.* Engineering DNAzyme cyclic amplification integrated dual-signal chiral sensing system for specific recognition of histidine enantiomers, Sensor. Actuat. B, 2020, 302:127191.

6. Mo F. J.; Chen M.; Meng H.; Wu J. L.; Fu Y. Z.* A DNA rolling motor for photoelectrochemical biosensing of oral cancer overexpressed 1, Sensor. Actuat. B, 2020, 309: 127824.

7. Wu J. L.; Wang A. W.; Liu P. K.; Hou Y. L.; Song L.; Yuan R.; Fu Y. Z.* Sulfur-functionalized zirconium(IV)-based metal-organic frameworks relieves aggregation-caused quenching effect in efficient electrochemiluminescence sensorSensor. Actuat. B, 2020, 32115: 128531.

8. Wu J. L.; Ran P. Y.Zhu S.; Mo F. J.; Wang C.; Fu Y. Z.* A highly sensitive electrochemiluminescence sensor for the detection of L-cysteine based on the rhombus-shaped rubrene microsheets and pnoanparticles, Sensor. Actuat. B, 2019, 278: 97-102.

9. Wang C.; Chen M.; Wu J. L.; Mo F. J.; Fu Y. Z.* Multi-functional electrochemiluminescence aptasensor based on resonance energy transfer between Au nanoparticles and lanthanum ion-doped cadmium sulfide quantum dots, Anal. Chim. Acta, 2019, 1086: 66-74.

10. Ran P.Y.; Song J.Y.; Mo F.J.; Wu J.L.; Liu P.K.; Fu Y. Z.* Nitrogen-doped graphene quantum dots coated with gold nanoparticles for electrochemiluminescent glucose detection using enzymatically generated hydrogen peroxide as a quencher, Microchim. Acta, 2019, 186:276.

11. Song J.Y.; Yang C. C.; Ma J.; Han Q.; Ran P. Y.; Fu Y. Z.* Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modifiedβ-cyclodextrin as recognition element, Microchim. Acta, 2018, 185, 230.

12. Zhu S.; Lin X.; Ran P. Y.; Xia Q.; Yang C. C.; Ma J.; Fu Y. Z.* A novel luminescence-functionalized metal-organic framework nanoflowers electrochemiluminesence sensor via “On-Off” system, Biosens. Bioelectron., 2017, 91: 436-440.

13. Xu J. J.; Ying Q. H.; Xia Q.; Lin X.; Fu Y. Z.* Enantioselective recognition of ascorbic acid and isoascorbic acid on HS-β-cyclodextrin/gold nanoparticles/hollow carbon microspheres hybrid modified electrodes, New J. Chem., 2016, 40: 6955-6961.

14. Xia Q.; Huang Y. H.; Lin X.; Zhu S.; Fu Y. Z.* Highly sensitive D-alanine electrochemical biosensor based on functionalized multi-walled carbon nanotubes and D-amino acid oxidase, Biochem. Eng. J., 2016, 113: 1-6.

15. Wang Q. H.; Lin X.; Guo D. M.; Xu J. J.; Xuan C. Z.; Chen C.; Fu Y. Z.* A novel chiral electrochemiluminescence sensor that can discriminate proline enantiomers, RSC Adv., 2015, 114: 94338-94343.

16. Zhang Q.; Guo L. J.; Huang Y. H.; Chen Y.; Chen C.; Fu Y. Z.* An electrochemical chiral sensing platform for propranolol enantiomer based on size-controlled gold colloidal nanoparticles functionalized nanocomposites, Sensor. Actuat. B, 2014, 199: 239-246.

17. Han Q.; Wang Y. H.; Huang Y. H.; Guo L. J.; Fu Y. Z.* Electrochemical recognition for carboxylic acids based on multilayer architectures of β-cyclodextrin and methylene blue/reduce-graphene interface on glassy carbon electrodes, Analyst2013, 138: 2051-2056.

18. Fu Y. Z.*; Han Q.; Chen Q.; Wang Y. H.; Zhou J.; Zhang Q. A new strategy for chiral recognition of amino acids. Chem. Commun.2012, 48:2322-2324.

19. Fu Y. Z.*; Wang L. L.; Chen Q.; Zhou J. Enantioselective recognition of chiral mandelic acid in the presence of Zn (II) ions by L-cysteine-modified electrode, Sensor. Actuat. B, 2011155:140-144.

20. Fu Y. Z.*; Chen M.; Cui X.; Wang L. L.; Chen Q.; Zhou J. Recognition behavior of chiral nanocomposites toward biomolecules and its application in electrochemical immunoassay. Sci. China (Chem.), 2010, 53 (6): 1453-1458.